Monday, 18 November 2024

Kac-Moody Lie Algebra Note 2 Quantum Group

Kac-Moody Lie Algebra
Note 2

Quantum Group

TANAKA Akio


1 <Cartan matrix>

Base field     K

Finite index set     I

Square matrix that has elements by integer     = ( aij )i, j  I

Matrix that satisfies the next is called Cartan matrix.

ij ∈ I

(1) aii = 2

(2) aij ≤ 0  ( j )

(3) aij = 0 ⇔ aji = 0

2 <Symmetrizable>

Cartan matrix     = (aij)ij I

Family of positive rational number    {di}iI

Arbitrary i, jI    diaij djaji

A is called symmetrizable.

3 <Fundamental root data>

Finite dimension vector space     h

Linearly independent subset of h     {hi}iI

Dual space of h     h*= HomK (hK )

Linearly independent subset of h*     {αi} iI

Φ = {h, {hi}iI, {αi} i}

Cartan matrix A = {αi(hi)} I, jI

Φis called fundamental root data of that is Cartan matrix.

4 <Standard form>

Symmetrizable Cartan matrix    = (aij)ij I

Fundamental root data     {h, {hi}iI, {αi} i}

E = αh*

Family of positive rational number     {di}iI

diaij djaji

Symmetry bilinear form over E     ( , ) : E×E → K     ( (α,α) = diaij )

The form is called standard form.

5 <Lattice>

n-dimensional Euclid space    Rn

Linear independent vector     v1, …, vn

Lattice of Rn     m1v1+ … +mnvn     ( m1, …, mn ∈ Z )

Lattice of h     hZ

6 <Integer fundamental root data>

From the upperv3, 4 and 5, the next three components are defined.

(Φ, ( , ), h)

When the components satisfy the next, they are called integer fundamental root data.

 ∈ I

(1)  ∈ Z

(2) αhz ) ⊂ Z

(3) t:=  hi ∈ hz

7 <Associative algebra>

Vector space over K     A

Bilinear product over K     A×A → A

When A is ring, it is called associative algebra.

8 <Similarity>

Integer     m

t similarity of m    [m]t

[m]= tmtm / t– t-1

Integer   m  mn≧0

Binomial coefficient     (mn)

t similarity of m!     [m]t! = [m]t! [m-1]t!…[1]t

t similarity of (mn)    [mn]t = [m]t! / [n]t! [mn]t!

[m0] = [mm]t = 1

8 <Quantum group>

Integer fundamental root data that has Cartan matrix = ( aij )i, j  I

      Ψ = ((h, {hi}iI, {αi} i), ( , ), h)

Generating set     {Kh}hh∪{EiFi}iI

Associative algebra U over K (q), that is defined the next relations, is called quantum group associated with Ψ.

(1) khkh = kh+h     ( hh’∈hZ )

(2) k0 = 1

(3) KhEiKqαi(h)Ei    hhZ , i)

(4) KhFiKqαi(h)Fi   hhZ , i)

(5) Ei Fj – FjEi ij  Ki – Ki-1 qi – qi-1     ( i , j)

(6) p [1-aijp]qiEi1-aij-pEjEip = 0     ( i , jI , i ≠)

(7) p [1-aijp]qiFi1-aij-pFjFip = 0     ( i , ji ≠)

[Note]

Parameter in K is thinkable in connection with the concept of <jump> at the paper Place where Quantum of Language exists / 27 /.

Refer to the next.

Place where Quantum of Language exists / Tokyo July 18, 2004

Tokyo February 9, 2008

Sekinan Research Field of Language

http://www.sekinan.org


No comments:

Post a Comment