Monday, 17 February 2025

Inspiration The Time of Quantum 2008

 

I

Inspiration   
The Time of Quantum 

TANAKA Akio

In August  2003, I went to Hakuba in Nagano prefecture for the summer vacation with my family.  At that time I had been thinking on the form of language for which I wrote the paper,  that connects with time inherent in characters, in March 2003 also at Hakuba.

At night of August 23 in cottage, I casually saw the advertising paper of electric dictionary. The paper was brought from the convenience store near the cottage in the evening. The dictionary on the paper was Seiko’s English-Japanese dictionary that has additionally consultation for Chinese or French language with large scale. I vaguely considered that after this dictionaries are necessarily taken these multi-lingual way.

At the time I suddenly realized that the form of language may be spherical style in which language contains all the information in itself. That was rather satisfied solution for the tough problem of language that I had been carrying in my life from my twenties.

I wrote the sketch-like paper of the theoretical approach after returning home of Tokyo. The paper was read at the international symposium of UNESCO opened in winter 2003 at Nara. In the paper, the spherical substance of language is seemed to be quantum in DELBRUCK’s image-like physical world. After 5 years from the inspiration at summer of Hakuba,  now I consider that spherical essence is manifold in infinite dimensional world.

Now I also realize that the toughest problem of language is minutely solvable in mathematical approach that has structurally definable terms.

Tokyo
September 29, 2008

[January 23, 2012]
The title changed.
The former title is “From Quantum to Manifold”.

Climbing to the Happoike Highland Pond, Nagano
Afar seen the Hakuba Range

Photo taken at 24 August 2013

Mt. Tateyama and campers, August 2009

 

                           Mt. Tateyama and campers, August 2009

Mt. Tateyama is the precipitous mountain that I love the most in the many mountains in Japan. We went its foot and walked around afar seeing the severe mountain’s cliffs from here and there. It was a really fantastic experience for us. 

Seeing the mountain is my and wife’s long desire. Many family, hikers, travellers and genuine climbers were gathering al over Japan and overseas. Their camping base is located below under the mountain bottom. Looking down the scene gave us also very fine feeling for the mountain and the climbers.




18 February 2025
Tokyo
SRFL


Stable and Unstable of Language For the Supposition of KARCEVSKIJ Sergej 2011

 Stable and Unstable of Language

For the Supposition of KARCEVSKIJ Sergej

TANAKA Akio

Completion of Language

Meaning Minimum of Language

Additional Meaning in Word

The papers on this site have been published by Sekinan Research Field of Language.

 2011 by 
The Sekinan Research Field of Language


Stable and Unstable of Language For the Supposition of KARCEVSKIJ Sergej Completion of Language 2011

 Stable and Unstable of Language

For the Supposition of KARCEVSKIJ Sergej

Completion of Language

September 23, 2011


[Preparation]
1.
n dimensional complex space Cn
Open set 
Whole holomorphic function over 
Ring sheaf for 
U →Oan(U)
Complex analytic manifold Cann
Algebraic manifold An multinomial of Cann
Ideal of multinomial ring a  [x1x2, ..., xn]
V(a) = {(a1a2, ..., an Cn (a1a2, ..., an) = 0,  a }
Whole closed set of V(a
Fundamental open set D(f) = {(a1a2, ..., an Cn | (a1a2, ..., an) ≠ 0}
Arbitrary family of open set {Ui} 
Easy sheaf F 
Zariski topological space 
Ring sheaf O
Affine space An = (  , O)
Ring R
Set of whole maximum ideal Spm R1
Spm R Spectrum of R
<Proposition>
Spm is Noether- like.
<Proposition>
is integral domain.
Whole of open sets without null set Ux
Quotient field K
Mapping from Uto whole partial set of O
O(V(a)c) =  Rf
c expresses complementary set.
O is easy sheaf of ring over Spm R that is whole set K.
<Definition>
R is finite generative integral domain over k.
Triple (i) (ii) (iii) is called affine algebraic variety.
(i) Set Spm R
(ii) Zariski topology
(iii) Ring's sheaf O
is called structure sheaf of affine algebraic variety.
Ring homomorphism between definite generative integral domains 
Upper is expressed by  .
Ring holomorphism OX(U) → OY((t )-1U)
Morphism from affine algebraic variety Y to ( OX(U) → OY((t )-1U), X)
When  is surjection, t is isomorphism overclosed partial set defined by p= Ker  .
Upper is called to closed immersion.
2.
Ring holomorphism 
Morphism between affine algebraic varieties 
Kernel of  p
Image of  
<Definition>
It is called that when  is injection is dominant.
<Definition>
R is medium ring between S and its quotient field K.
When  that is given by natural injection  is isomorphism over open set,  is called open immersion.
<Definition>
When X is algebraic variety, longitude of maximum chain is equal to transcendental dimension of function field k(X).
It is called dimension of algebraic variety X, expressed by dim X.
<Definition>
Defined generative field over k K
Space ( X, Ox )added ring that is whole sets of K that has open covers {Ui} satisfies next conditions is called algebraic variety.
(i) Each Ui is affine algebraic variety that has quotient K .
(ii) For each i, j  I, intersection  is open partial set of  .
3.
<Definition>
Tensor product between ring and itself becomes ring by each elements products.
Elements  that defines surjective homomorphism is expressed by  .
Image  of closed embedding defined by  is called diagonal.
<Definition>
Field K
Ringed space that have common whole set K (A, OA) (B, OB)
Topological space C
Open embedding 
A and B have common partial set C.
Topological space glued A and B by C 
Easy sheaf over OW
ahere, arbitrary open set Ø ≠ 
Ringed space  is called glue of A and B by C.
<Definition>
Intedgral domains that have common quotient field K R, S
Element R am ≠ 0
Element S bn ≠ 0
Spm T  Spm R, Spm T  Spm S
Glue defined by the upper is called simple.
<Definition>
Affine algebraic varieties U1U2
Common open set of U1UUC
Diagonal embedding 
When the upper is closed set, glue is called separated.
<Proposition>
For simple glue , next is equivalent.
(*) It is separated.
(**) Ring  is generated by R and S.
<Definition>
R and S are integral domains that have common quotient field K.
For partial ring T=RS generated by R and S, when <Definition> simple is satisfied, it is called "Spm R ad Spm S are simple glue."
<Sample>
Projective space Pn is simple glue.
<Definition>
Algebraic Variety's morphism is glue of affine algebraic variety's ring homomorphism image.
Algebraic direct product is direct product of affine algebraic variety.
4.
Affine algebraic variety X
Ring over k R
 is called R value point of X.
Whole  is called set of R value point of X, expressed by X(R).
Ring homomorphism over k 
X(f) := X(R)X(S)
Ring homomorphism 
<Definition>
 is function from ring category over k to category of set.
<Definition>
Functors from ring category to set category F, G
Ring R
Family of  over ring R {}
{} has functional morphism.
Functors F,G have isomorphism ( or natural transformation).
Functor from ring's category to set's category that is isomorphic to algebraic variety, is called representable or represent by X, or fine moduli.
<Definition>
Functor from ring's category to set's category F
When  satisfies the next conditions, X is called coarse moduli.
(i) There is natural transformation  :  .
(ii) Natural transformation  ,
Morphism that satisfies  is existent uniquely.
(iii) For algebraic close field k k, (k') is always bijection.
<Definition>
Algebraic variety G that  is functor to group's category is called algebraic group.
<Definition>
Finite generative ring over k A
When G = Spm A satisfies 3 conditions on the next triad is called affine algebraic group.
Triad
Conditions
(i)  are commutative for .
(ii)There is identity map for A.
(iii) There is coincident with  for A.
5.
Projective space over Pn
(2n+1) dimensional spherical surface {}
Pn has continuous surjection from .
Pn is compact.
<Definition>
Map  is called closed map when  is closed set image  becomes closed set.
<Definition>
Algebraic variety X is called complete when projection  is closed map for arbitrary manifold Y.
<Definition>
Morphism from complete algebraic manifold X to separated algebraic manifold Y is closed map.
<Proposition>
Projective space Pn is complete.
<System>
Algebraic manifold that has closed embedding at Pn is complete.
This algebraic manifold is called projective algebraic manifold.
[Interpretation]
Here language is expressed by Pn.
Word is expressed by projective algebraic manifold.
Meaning of word is expressed by closed embedding.

This paper has been published by Sekinan Research Field of Language.

 2011 by 
The Sekinan Research Field of Language